Influence of Fluid Cell Design on the Frequency Response of AFM Microcantilevers in Liquid Media

نویسندگان

  • Ramin Motamedi
  • Paula M. Wood-Adams
چکیده

A study of the frequency response of AFM microcantilevers in liquid media contained in a commercial fluid cell is presented. Such systems exhibit complicated dynamics which are often not well described by available theories. Their dynamic behavior has a direct effect on the use of the AFM in dynamic mode while imaging in liquid or while extracting the rheological properties of the fluid. We explore the issues related to the design of the cantilever holder/fluid cell and propose an approach for evaluating, minimizing and recognizing the ultimate limitations of commercial cantilever holders. A technique for estimating the frequency response spectrum of the fluid cell itself from experimental data is presented. This spectrum can then be used to evaluate whether or not the fluid cell is suited for the desired purpose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...

متن کامل

Influence of Fluid-Structure Interaction on Microcantilever Vibrations: Applications to Rheological Fluid Measurement and Chemical Detection

At the microscale, cantilever vibrations depend not only on the microstructure’s properties and geometry but also on the properties of the surrounding medium. In fact, when a microcantilever vibrates in a fluid, the fluid offers resistance to the motion of the beam. The study of the influence of the hydrodynamic force on the microcantilever’s vibrational spectrum can be used to either (1) optim...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

Application of Imidazolium based ionic liquid Nano-emulsions for the removal of H2S from crude oil

Hydrogen sulfide is one of the most dangerous contaminants in crude oil and natural gas that have to be removed prior to the transfer and refining. In this study, hydrophobic ionic liquid, i.e. 1-ethyl-3-methylimidazolium methylflour, [EMIM] [NTf2], was used as scavenger for the reduction of the H2S. Due to its ionic nature, [EMIM] [NTf2] forms nanoemulsion in crude oil media and hence can diss...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008